An integrated modelling framework for regulated river systems

نویسندگان

  • Wendy D. Welsh
  • Jai Vaze
  • Dushmanta Dutta
  • David W. Rassam
  • Joel M. Rahman
  • Ian D. Jolly
  • Peter J. Wallbrink
  • Geoffrey M. Podger
  • Matthew Bethune
  • Matthew Hardy
  • Jin Teng
  • Julien Lerat
چکیده

Management of regulated water systems has become increasingly complex due to rapid socio-economic growth and environmental changes in river basins over recent decades. This paper introduces the Source Integrated Modelling System (IMS), and describes the individual modelling components and how they are integrated within it. It also describes the methods employed for tracking and assessment of uncertainties, as well as presenting outcomes of two case study applications. Traditionally, the mathematical tools for water resources planning and management were generally designed for sectoral applications with, for example, groundwater being modelled separately from surface water. With the increasing complexity of water resources management in the 21st century those tools are becoming outmoded. Water management organisations are increasingly looking for new generation tools that allow integration across domains to assist their decision making processes for short-term operations and long-term planning; not only to meet current needs, but those of the future as well. In response to the need for an integrated tool in the water industry in Australia, the eWater Cooperative Research Centre (CRC) has developed a new generation software package called the Source IMS. The Source IMS is an integrated modelling environment containing algorithms and approaches that allow defensible predictions of water flow and constituents from catchment sources to river outlets at the sea. It is designed and developed to provide a transparent, robust and repeatable approach to underpin a wide range of water planning and management purposes. It can be used to develop water sharing plans and underpin daily river operations, as well as be used for assessments on water quantity and quality due to changes in: i) land-use and climate; ii) demands (irrigation, urban, ecological); iii) infrastructure, such as weirs and reservoirs; iv) management rules that might be associated with these; and v) the impacts of all of the above on various ecological indices. The Source IMS integrates the existing knowledge and modelling capabilities used by different state and federal water agencies across Australia and has additional functionality required for the river system models that will underpin the next round of water sharing plans in the country. It is built in a flexible modelling environment to allow stakeholders to incorporate new scientific knowledge and modelling methods as they evolve, and is designed as a generic tool suitable for use across different jurisdictions. Due to its structure, the platform can be extended/customised for use in other countries and basins, particularly where there are boundary issues. Crown Copyright 2012 Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Modelling, Simulation and Control of Integrated Urban Wastewater Systems

This paper is concerned with the integrated modelling, and control of urban wastewater systems (UWS) comprising the wastewater treatment plants (WTP), receiving waters (river) and the sewer networks. A unified framework is developed and simple models are used and implemented in Matlab/Simulink to produce a toolbox. Novel linear and nonlinear control structures are then proposed to design integr...

متن کامل

A Bayesian model decision support system: dryland salinity management application

Addressing environmental management problems at catchment scales requires an integrated modelling approach, in which key bio-physical and socio-economic drivers, processes and impacts are all considered. Development of Decision Support Systems (DSSs) for environmental management is rapidly progressing. This paper describes the integration of physical, ecological, and socio-economic components i...

متن کامل

Towards an Open Modelling Interface (OpenMI) The HarmonIT project

The Water Framework Directive (WFD) poses an immense challenge to water management in Europe. Aiming at a “good ecological status” of surface waters in 2015, integrated river basin management plans need to be in place by 2009, and broadly supported by stakeholders. Information & Communication Technology (ICT) tools, such as computational models, are very helpful in designing river basin managem...

متن کامل

River water quality modelling for river basin and water resources management with a focus on the Saale River, Germany

This thesis focuses on computer modelling issues such as i) uncertainty, including uncertainty in parameters, data input and model structure, ii) model complexity and how it affects uncertainty, iii) scale, as it pertains to scaling calibrated and validated models up or down to different spatial and temporal resolutions, and iv) transferability of a model to a site of the same scale. The discus...

متن کامل

An appropriateness framework for the Dutch Meuse decision support system

Models are essential in a decision support system for river basin management. In a decision support system for integrated planning and management, the use of appropriate models is important to avoid models being either too simple or too complex. In this paper, appropriate models refer to models that are good-enough-but-not-more-than-that to obtain an acceptable ranking of river engineering meas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2013